From Wikipedia"
"Fat Man" was the codename for the type of atomic bomb that was detonated over the Japanese city of Nagasaki by the United States on 9 August 1945. It was the second of the only two nuclear weapons ever used in warfare, the first being Little Boy, and its detonation marked the third-ever man-made nuclear explosion in history. It was built by scientists and engineers at Los Alamos Laboratory using plutonium from the Hanford Site and dropped from the Boeing B-29 Superfortress Bockscar. For the Fat Man mission, Bockscar was piloted by Major Charles W. Sweeney.
The name Fat Man refers generically to the early design of the bomb, because it had a wide, round shape. It was also known as the Mark III. Fat Man was an implosion-type nuclear weapon with a solid plutonium core. The first of that type to be detonated was the Gadget, in the Trinity nuclear test, less than a month earlier on 16 July at the Alamogordo Bombing and Gunnery Range in New Mexico.
Two more Fat Man bombs were detonated during the Operation Crossroads nuclear tests at Bikini Atoll in 1946. Some 120 Fat Man units were produced between 1947 and 1949, when it was superseded by the Mark 4 nuclear bomb. The Fat Man was retired in 1950.
In 1942, prior to the Army taking over wartime atomic research, Robert Oppenheimer held conferences in Chicago in June and Berkeley, California, in July, at which various engineers and physicists discussed nuclear bomb design issues. A gun-type design was chosen, in which two sub-critical masses would be brought together by firing a "bullet" into a "target". Richard C. Tolman suggested an implosion-type nuclear weapon, but the idea attracted scant consideration.
The feasibility of a plutonium bomb was questioned in 1942. James Conant heard on 14 November from Wallace Akers, the director of the British "Tube Alloys" project, that James Chadwick had "concluded that plutonium might not be a practical fissionable material for weapons because of impurities." Conant consulted Ernest Lawrence and Arthur Compton, who acknowledged that their scientists at Berkeley and Chicago respectively knew about the problem, but could offer no ready solution. Conant informed the director of the Manhattan Project, Brigadier General Leslie R. Groves, Jr., who in turn assembled a special committee consisting of Lawrence, Compton, Oppenheimer, and McMillan to examine the issue. The committee concluded that any problems could be overcome simply by requiring higher purity.
Oppenheimer, reviewing his options in early 1943, gave priority to the gun-type weapon, but as a hedge against the threat of pre-detonation, he created the E-5 Group at the Los Alamos Laboratory under Seth Neddermeyer to investigate implosion. Implosion-type bombs were determined to be significantly more efficient in terms of explosive yield per unit mass of fissile material in the bomb, because compressed fissile materials react more rapidly and therefore more completely. Nonetheless, it was decided that the plutonium gun would receive the bulk of the research effort, since it was the project with the least amount of uncertainty involved. It was assumed that the uranium gun-type bomb could be easily adapted from it.
The gun-type and implosion-type designs were codenamed "Thin Man" and "Fat Man" respectively. These code names were created by Robert Serber, a former student of Oppenheimer's who worked on the Manhattan Project. He chose them based on their design shapes; the Thin Man would be a very long device, and the name came from the Dashiell Hammett detective novel The Thin Man and series of movies by the same name; the Fat Man would be round and fat and was named after Sydney Greenstreet's character in The Maltese Falcon. Little Boy would come last, as a variation of Thin Man.
Neddermeyer discarded Serber and Tolman's initial concept of implosion as assembling a series of pieces in favor of one in which a hollow sphere was imploded by an explosive shell. He was assisted in this work by Hugh Bradner, Charles Critchfield, and John Streib. L. T. E. Thompson was brought in as a consultant, and discussed the problem with Neddermeyer in June 1943. Thompson was skeptical that an implosion could be made sufficiently symmetric. Oppenheimer arranged for Neddermeyer and Edwin McMillan to visit the National Defense Research Committee's Explosives Research Laboratory near the laboratories of the Bureau of Mines in Bruceton, Pennsylvania (a Pittsburgh suburb), where they spoke to George Kistiakowsky and his team. But Neddermeyer's efforts in July and August at imploding tubes to produce cylinders tended to produce objects that resembled rocks. Neddermeyer was the only person who believed that implosion was practical, and only his enthusiasm kept the project alive.
Oppenheimer brought John von Neumann to Los Alamos in September 1943 to take a fresh look at implosion. After reviewing Neddermeyer's studies, and discussing the matter with Edward Teller, von Neumann suggested the use of high explosives in shaped charges to implode a sphere, which he showed could not only result in a faster assembly of fissile material than was possible with the gun method, but which could greatly reduce the amount of material required, because of the resulting higher density. The idea that, under such pressures, the plutonium metal itself would be compressed came from Teller, whose knowledge of how dense metals behaved under heavy pressure was influenced by his pre-war theoretical studies of the Earth's core with George Gamow. The prospect of more-efficient nuclear weapons impressed Oppenheimer, Teller, and Hans Bethe, but they decided that an expert on explosives would be required. Kistiakowsky's name was immediately suggested, and Kistiakowsky was brought into the project as a consultant in October 1943.
The implosion project remained a backup until April 1944, when experiments by Emilio G. Segrè and his P-5 Group at Los Alamos on the newly reactor-produced plutonium from the X-10 Graphite Reactor at Oak Ridge and the B Reactor at the Hanford site showed that it contained impurities in the form of the isotope plutonium-240. This has a far higher spontaneous fission rate and radioactivity than plutonium-239. The cyclotron-produced isotopes, on which the original measurements had been made, held much lower traces of plutonium-240. Its inclusion in reactor-bred plutonium appeared unavoidable. This meant that the spontaneous fission rate of the reactor plutonium was so high that it would be highly likely that it would predetonate and blow itself apart during the initial formation of a critical mass. The distance required to accelerate the plutonium to speeds where predetonation would be less likely would need a gun barrel too long for any existing or planned bomber. The only way to use plutonium in a workable bomb was therefore implosion.
The task of the metallurgists was to determine how to cast plutonium into a sphere. The difficulties became apparent when attempts to measure the density of plutonium gave inconsistent results. At first contamination was believed to be the cause, but it was soon determined that there were multiple allotropes of plutonium. The brittle α phase that exists at room temperature changes to the plastic β phase at higher temperatures. Attention then shifted to the even more malleable δ phase that normally exists in the 300–450 °C (570–840 °F) range. It was found that this was stable at room temperature when alloyed with aluminum, but aluminum emits neutrons when bombarded with alpha particles, which would exacerbate the pre-ignition problem. The metallurgists then hit upon a plutonium–gallium alloy, which stabilized the δ phase and could be hot pressed into the desired spherical shape. As plutonium was found to corrode readily, the sphere was coated with nickel.
The early Y-1222 model Fat Man was assembled with some 1,500 bolts. This was superseded by the Y-1291 design in December 1944. This redesign work was substantial, and only the Y-1222 tail design was retained. Later versions included the Y-1560, which had 72 detonators; the Y-1561, which had 32; and the Y-1562, which had 132. There were also the Y-1563 and Y-1564, which were practice bombs with no detonators at all. The final wartime Y-1561 design was assembled with just 90 bolts.
Because of its complicated firing mechanism and the need for previously untested synchronization of explosives and precision design, it was thought that a full test of the concept was needed before the scientists and military representatives could be confident it would perform correctly under combat conditions. On 16 July 1945, a Y-1561 model Fat Man, known as the Gadget for security reasons, was detonated in a test explosion at a remote site in New Mexico, known as the "Trinity" test. It gave a yield of about 20 kilotonnes (84 TJ). Some minor changes were made to the design as a result of the Trinity test. Philip Morrison recalled that "There were some changes of importance... The fundamental thing was, of course, very much the same."
Intersting topic and i am sure a controversial one for some. Nice work with the detail painting, looks cool and i am sure a great addition to the shelf.
ReplyDeleteI've run out of shelves a long time go. LOL!
ReplyDeleteWith Little Boy, nice documentation ! I like
ReplyDeleteThanks Manchu!
ReplyDelete