Translate

Tuesday, September 23, 2014

BAE Systems Hawk

Here are some images of Airfix's 1/48 scale BAE Systems Hawk.

From Wikipedia"
The BAE Systems Hawk is a British single-engine, advanced jet trainer aircraft. It was first flown at Dunsfold, Surrey, in 1974 as the Hawker Siddeley Hawk, and subsequently produced by its successor companies, British Aerospace and BAE Systems, respectively. It has been used in a training capacity and as a low-cost combat aircraft.
Operators of the Hawk include the Royal Air Force (notably the Red Arrows display team) and a considerable number of foreign military operators. The Hawk is still in production in the UK and under licence in India by Hindustan Aeronautics Limited (HAL) with over 900 Hawks sold to 18 operators around the world.
In 1964 the Royal Air Force specified a requirement (Air Staff Target (AST) 362) for a new fast jet trainer to replace the Folland Gnat. The SEPECAT Jaguar was originally intended for this role, but it was soon realised that it would be too complex an aircraft for fast jet training and only a small number of two-seat versions were purchased. Accordingly, in 1968, Hawker Siddeley Aviation (HSA) began studies for a simpler aircraft, initially as special project (SP) 117. The design team was led by 
This project was funded by the company as a private venture, in anticipation of possible RAF interest. The design was conceived of as having tandem seating and a combat capability in addition to training, as it was felt the latter would improve export sales potential. By the end of the year HSA had submitted a proposal to the Ministry of Defence based on the design concept, and in early 1970 the RAF issued Air Staff Target (AST) 397 which formalised the requirement for new trainers of this type. The RAF selected the HS.1182 for their requirement on 1 October 1971 and the principal contract, for 175 aircraft, was signed in March 1972.

The prototype aircraft first flew on 21 August 1974. All development aircraft were built on production jigs; the program remained on time and to budget throughout. The Hawk T1 entered RAF service in late 1976. The first export Hawk 50 flew on 17 May 1976. This variant had been specifically designed for the dual-role of lightweight fighter and advanced trainer; it had a greater weapons capacity than the T.1.
More variants of the Hawk followed and common improvements to the base design typically include increased range, more powerful engines, redesigned wing and undercarriage, the addition of radar and forward-looking infrared (FLIR), GPS navigation, and night vision compatibility. Later models were manufactured with a great variety in terms of avionics fittings and system compatibility to suit the individual customer nation, cockpit functionality was often rearranged and programmed to be common to an operator's main fighter fleet to increase the Hawk's training value.
In 1981 a derivative of the Hawk was selected by the United States Navy as their new trainer aircraft. Designated the McDonnell Douglas T-45 Goshawk, the design was navalised and strengthened to withstand operating directly from the decks of carriers in addition to typical land-based duties; This T-45 entered service in 1994; initial aircraft had analogue cockpits, while later deliveries featured a digital glass cockpit. All airframes are planned to undergo avionics upgrades to a common standard.

A major competitor to the Hawk for export sales has been the Dassault/Dornier Alpha Jet; aviation expert John W. R. Taylor commented: "What Europe must avoid is the kind of wasteful competition that has the Hawker Siddeley Hawk and Dassault-Breguet/Dornier Alpha Jet battling against each other in the world market." By early 1998, a total of 734 Hawks had been sold, more than 550 of which had been to export customers. Military customers often procured the Hawk as a replacement for older aircraft such as the BAC Strikemaster, Hawker Hunter, and Douglas A-4 Skyhawk.
A Hawk T2 of the Royal Air Force in 2009
During the 1980s and 1990s, British Aerospace, the successor company to Hawker Siddeley, was trying to gain export sales of the variable-wing Panavia Tornado strike aircraft; however countries such as Thailand and Indonesia, whom had shown initial interest in the Tornado, concluded that the Hawk to be a more suitable and preferable aircraft for their requirements. Malaysia and Oman cancelled their arranged Tornado orders in the early 1990s, both choosing to procure the Hawk instead. Aviation authors Norman Polmar and Dana Bell stated of the Hawk: "Of the many similar designs competing for a share of the world market, the Hawk has been without equal in performance as well as sales".
On 22 December 2004, the Ministry of Defence awarded a contract to BAE Systems to develop an advanced model of the Hawk for the RAF and Royal Navy. The Hawk Mk. 128, otherwise designated as Hawk T2, replaces conventional instrumentation with a glass cockpit, to better resemble modern fighter aircraft such as the new mainstay of the RAF, the Eurofighter Typhoon. In October 2006, a GB£450 million contract was signed for the production of 28 Hawk 128s. The aircraft's maiden flight occurred on 27 July 2005 from BAE Systems' Warton Aerodrome.
According to BAE Systems, as of July 2012 they have sold nearly 1000 Hawks so far, with sales continuing to date. In July 2012, Australian Defence Minister Stephen Smith confirmed that Australia's fleet of Hawk Mk 127s would be upgraded to a similar configuration to the RAF's Hawk T2 as part of a major mid-life upgrade. As of 2012, the Hawk T2 is one of the competitors for the United States Air Force's T-X program to acquire a new trainer fleet.

The Hawk is an advanced trainer with a two-man tandem cockpit, a low-mounted cantilever wing and is powered by a single turbofan engine. Unlike many of the previous trainers in RAF service, the Hawk was specifically designed for training. Hawker had developed the aircraft to have a high level of servicability, as well as lower purchasing and operating costs than previous trainers like the Jet Provost. The Hawk has been praised by pilots for its agility, in particular its roll and turn handling.
The design of the fuselage included a height differential between the two seats of the cockpit; this provided generous levels of visibility for the instructor in the rear seat. Each cockpit is fitted with a Martin-Baker Mk 10B zero-zero rocket-assisted ejection seat. Air is fed to the aircraft's rear-mounted Rolls-Royce Turbomeca Adour engine via intakes on each of the forward wing roots. During the aircraft's development, Hawker had worked closely with Rolls-Royce to reduce the engine's fuel consumption and to ensure a high level of reliability.
Even within the development stages, a Hawk variant was intended to also serve as a single-seat ground-attack fighter; both the trainer and fighter models were developed with the export market in mind.[4] On single seat models, the forward cockpit area which normally houses a pilot is replaced by an electronics bay for avionics and onboard systems, including a fire control computer, multi-mode radar, laser rangefinder and forward-looking infrared (FLIR). Some export customers, such as Malaysia, have extensive modifications to their aircraft, including the addition of wingtip hardpoint stations and a fittable inflight refuelling probe.

The Hawk was designed to be manoeuvrable and can reach Mach 0.88 in level flight and Mach 1.15 in a dive, thus allowing trainees to experience transonic flight before advancing to a supersonic trainer. The airframe is very durable and strong, stressed for +9 g, the normal limit in RAF service is +7.5/-4 g. A dual hydraulic system supplies power to operate systems such as the aircraft's flaps, airbrakes and landing gear, together with the flight controls. A ram air turbine is fitted in front of the single tail fin to provide backup hydraulic power for the flight controls in the event of an engine failure,[ additionally a gas turbine auxiliary power unit is housed directly above the engine.
The Hawk is designed to carry a centreline gun pod, such as the 30 mm ADEN cannon, two under-wing pylons, and up to four hardpoints for fitting armaments and equipment.[4] In RAF service, Hawks have been equipped to operate of Sidewinder air-to-air missiles. In the early 1990s, British Aerospace investigated the possibility of arming the Hawk with the Sea Eagle anti-ship missile for export customers.[

No comments: